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Abstract
Linearized equations are set up to describe transverse waves in a rela-
tivistic plasma embedded iﬁ a magnetic field and in the presence of a non-relativistic
plasma. The waves are taken to propagate at right angles to the unperturbed field.
Unstable waves are found to exist when the momentum distribution is taken to be of
the cosmic ray type, but anisotropic. The instability exists only when relativistic
particles are present and is a consequence of the mass of a fast particle being dif-
ferent from its rest mass. ,
The maximum amplification rate is found for this case and is illustrated
numerically by assuming physical values appropriate to the case of galactic cosmic
ray electrons, It is shown that any anisotropy is rapidly dastroyed and for cosmic

ray electrons which are more than about @ million years old isotropy is to be

expected.




Introduction

It is well known that a relativistic charged particle moving in a circle in
a uniform magnetic field emits synchrotron radiation mainly in the plane perpendi-
cular to the magnetic field direction.

It is then of interest to consider the stability of a relativistic electron
plasma, immersed in a homogeneous magnetic field, to waves which propagate normal
to the unperturbed magnetic field direction.

We will consider the case where there also exists a thermal electron
plasma embedded in the same magnetic field which is taken to be infinite in extent
to avoid boundary effects.

We suppose that there also exists an immobile, cold, proton background
plasma sufficient to preserve space charge neutrality so that the system is stable
against electrostatic disturbances.

The question of electromagnetic stability of such a system is interesting
since an unstable situation means that the relativistic electrons feed energy to the
electromagnetic wave and consequently they become cool. On the other hand a
stable situation means that the transverse wave is damped and thus the fast particles
gain eneigy. Thus the mechanism may be either a cooling or a heating process
for cosmic ray electrons and which it is will depend on the shape of the distribution
function in momentum space. In this paper we propose to examine one particular
type of distribution function which has been ascribed to cosmic rays. We will allow
the distribution function to possess one arbitrary parameter, namely the degree of

anisotropy, which can be varied in order that either stability or instability is
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achieved. In the case of instability a discussion of the minimum e-folding time
for the wave is given and a numerical estimate is made to decide if the process
is physicially significant in the case of galactic cosmic ray electrons.

2. The Dispersion Relation

We choose a Cartesian coordinate system so that the embedded magnetic
field, of strength Ho , points along the direction of the x-axis and may

be written !io = Ho (I) 0, O)'

The perturbation electromagnetic potential, A , which is of

P

infinitesimal amplitude A , is chosen to be

o]
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Associated with this potential are perturbation electric and magnetic

fields given by
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and
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The relativistic Vlasov equation for a distribution function |~  can be

written



where m is the particle's rest mass, € its charge, c
velocity of light and ﬂ , the nomalized momentum, is given by
mc ,r,! = —ﬁ where ,E‘ is the actual momentum.

We linearize (3) by setting

where subscript

equation can then be written

Changing to cylindricai momenium coording
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is the

(4)
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and making use of (1) and (2), we see that (4) can be written
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where :F‘ = ;(k?'”{-) and O mec= eH . We have
P :
also assumed aa? =0 as is reasonable in any physical situation.
It is easy to show that the solution to (5) is given by
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We must also satisfy the Maxwell’ equation
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which can be written
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Substituting for 50 from (6) and performing the integral over & ,

enables (7) to be written
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Transforming to spherical momentum coordinates defined by /7,, ﬂmY IZL nYMY’

we see that (8) can be written

kz w/z = — 87 é:-—dJT [ ﬂsm\rm\rJ_L(CanM\{l)
(sw,- a.)/(,,.,-p) \/(“’ﬂ?) X
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This can be re-arranged to give

kz_w’/c +8F €2 ds.(f ”““P 910 U— e ﬂgw
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Now it is well known that

2 T (0 =1

S=-u
for all values of X . Thus the third term on the left hand side of (10) can
be written
P R
g7l 2, A
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On the right hand side of (10) we see that we have a factor inside the double integral

of the form
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Upon multiplying each tem of (11) by G+£)/(S+L) and noting that

I;(x) = J;Z(x) we see that (11) becomes

/a)
T- LZ e

Using the results given in the appendix it can be shown that
T = = Tewsee (wh) J;{a)l—b(a) :

Thus we can simplify (10) to obtain
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We will refer to either (10) or (12) as the dispersion relation since they define the
spread of k with 0 . Since we are looking for the temporal

stability of the system we define I( to be real and positive. The necessary
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and sufficient condition for an unstable situation to exist is that the imaginary part
of (12) vanish for some real positive d (Penrose, 1960).
To find the imaginary part of (12) it is necessary to consider the position
of the poles which occur in the n integral. It is easily seen that poles

occur in the /7 integral whenever

= ! /(Slu,_hmi) \

For @ real and positive it is obvious that the poles will lie on the
real N axis forall  S$% w"/bﬁ . . For §< “)/a),_ the poles
lie on the imaginary I—I axis.

Writfing

X= Tl-w" /(Szwu’w’)
we see that as jm (M)) -0 from above, we must understand

o = Pla) —im G

forall S 2 %, where we have initiaiiy defined L3 tc lie in
D Y

the upper half complex plane. For a thorough discussion of this point we refer the
reader to Jackson (1958).

Thus for A real and positive we see that (12) becomes
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If the equilibrium distribution ‘function is isotropic in momentum space
and monotonically decreasing with »‘ucveasfug [1 we see that the imaginary part
of (13) is always negative and consequently this situation is always stable.

We can also note that if only thermal particles are present so that we

can replace the relativistic factor /(Prﬂl) by unity then the imaginary

part of (13) is identically zero for all real w3 values and thus this situation
would also be stable. In such a case for real ) ’ k would
change sign as w passed through S Ay and would become, say,
positive infinite and negative infinite for w=SW. X O respectively.

Thus waves would either propagate or be heavily damped depending on
which side of Sw the frequency, 125 B Iﬁg. Hence only for
relativistic particles is it possible to have an unstable situation.

Let us therefore consider the case where an anisotropic relativistic
electron plasma is present and also a cold thermal electron plasma. We shall

also assume that a cold background proton plasma is present which serves to satisfy




space charge neutrality everywhere,

3. The Equilibrium Distribution Function

While there are many possible relativistic electron distributions which
one can use in (12) we wish to choose one which has some probability of being
realized in nature. From cosmic ray measurements an inverse power law spectrum

seems to fit the data reasonably well, so for the relativistic electrons we choose

-(Y+2)

fo= ST (v S(ﬂﬂ‘lo) , (14)

Here Y is a fixed index and o  we call the degree of anisotropy.

The step function S(X) is defined by

S(x) =1 x>0

=0 xZ0

It is clear that with an inverse power law such a lower momentum cut-
off is essential in order to keep the number density, (’ , of relativistic
particles finite. Provided ¥ is large enough (} 2) no upper
momentum cut-off is required to keep the energy u"éi'l‘if‘y' of cosmic ray electrons
finite.

The constant S is chosen so that

OQTPDP;Q Nsmvdy < & )
o
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Let us further assume that, while the relativistic electrons provide the
imaginary part of (13), the thermal particles have a much higher number density
than the relativistic particles and hence provide the real part of (13). Thus it is
the relativistic particles which provide the energy exchange with the wave but it
is the thermal particles which define the wavenumber at which this exchange occurs.

We treat the themal particles as being completely cold so that their

distribution function can be written

J - Noméiy)

1% St Y

(16)

where N is the number density of cold electrons. Substituting (16) into

(13) and evaluating the integrals we see that the real part can be written
L2 2y T2
h= (5 -w)c (17)

where the plasma frequency for cold particles is defined by

w;':_ 4'"N€’%,\ .

In terms of the phase refractive index of the wave, 1, , we have

Rt = nra = ()t

(18)

Thus the usual condition for a propagating wave to exist, namely w>ap

~

is recovered in the limit of the cold electron approximation.
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Let us now turn our attention to the imaginary part of (13). Writing

R* =M(w) +IN(w)

where M and N are real functions of the real variable W
we see that, since bl is real, we have
T
Niw) = 4 “LZS(S«»L ) shevest g (‘kn‘“‘"’) aE*wfwaio) dy | (19)
M d J
SN, 8

= “"/(:2«43-“,7)
and with ‘)Cn given by (14) we must demand that N{Q) =0 for

some real positive W if an unstable situation is to develop.

Substituting for (14) in (19) we see that

o) = 470 305
NU MCLL Zw(sl - )‘/l{shnwc«g y U— (HSM'\{,/(SM“LU)) ><

S> N/(hn'))

~w( Y 2,19 L —w
{ [ w(¥2) (- +(:+n S(S /(|+rl ))] Folcag L;’?(FM) NG )Sé'z“"—:—/{'*ﬂo?))] } 0
-t T, 5

Assuming that is sufficiently large compared to unity so that \/ ) ~
o y pa y b ) ~ 1],

and Sw, > w we see that (20) becomes

Ml ~ 4'r36 S‘(u/u) E N x[sw\y%wj?(hgsw\f) X
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Since we know that ©2 LOP and ﬂo is reasonably large compared to
unity we can replace the sum over S by an integral without appreciable

error. Writing S= ('%,L)x and letting C—J/u'_)= J we see that (21) becomes

1—

3,2 I~¥ .
M= ﬂljx B [y ety I:(“S@wﬂx) X

0 9

mc?

{ [-(3’_:?2) 441“5(,_,—,6)] 4ol mq;\*[—(}?) L @)Jf 0{\‘/

‘ (22)

Now Vl(l and thus A Sw 'y ¢l . Alsosince A)},NP

and ﬂ, 2,71 we can use the {arlini approximation to the Bessel function

so that
o A L
L Oop)= (ano o)) R (12 A0) ) ) N
um ) PR
where v=Jlx ond (3 = hyi\.\'\r.
Upon using this approximation in (22) we see that
Mo
Niw) « d12e?§ x'\?xj S rsip /i-v'('l-n?n;.w) "Q‘e SF/RLAY ¥)
mem Ty ( [+ (o) ) X
~(w2)x™ | -igy
{ [ + 27 §(x M) +x cos?y [-(M)x’iﬂ‘tg(x—ﬂo)]j Ay . 24

Changing the order of integration in (24) we see that
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where
o= e (14 V(isiiy) ] e-z/(lm?sa«wﬂ
=V (1-ntsnt y ‘ (26)
If the x-integral is to converge it is clear that we require C >
Since n< 1 the smallest value of a occurs when S, = 1
and at this value we require
LA(M/(M)) ~ l\.(l-./(l—m)) >.2/(I~m)
(27)
2
Remembering that nt = /_@P/@ and w> LJP we
see that (27) is always obeyed. Thus the integral over X converges.
While the X integral cannot be performed exactly an estimate

of the value can be made in the following manner. Consider

I(Y) —_ j eoaxo‘x

where 1>l ) /7,, 1 - ltis clear that for X2, 170 +a~! the
integrand rapidly becomes very small compared with its value at ﬂo

So that to a reasonable degree of accuracy we can write
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Making use of (28) in (25) we see that
A
NIy = =41 | gy [-iisiy) [ ¢ R (29)
Mt A \/("nls‘m‘\f) |4¢/(1-ntsidy) [(?H.z H‘““"“"‘*ﬂeﬂ) - (14 sy

e Ny )
where Qa is given by (26).

Changing variables in (29) through the relation

= w 1)(’ )

we see that (29) can be written

l
NiW) = -47%'S | §) JNI A [{l e)ftw) g (Thn ) ) .
nSmetilL (H £ N, h (H§ % (15t ‘-4)2](}'%1,) 4T,
) M ) ()

It is obvious by inspection that (30) possesses a sharp maximum in the
It 'g <1 . Thus we can gainfully employ the method of
steepest descents to evaluate the integral.

The maximum occurs when

SeV(-wy [ 1+ rn® J an
) 4!2”,(1—;41)%-
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where r is the power of ({ H\'lsQ whicl) occurs in the inte-

grand of (30) and this result is approximately true provided

rnt << 4al, (1%
32)

Then the method of steepest descents yields

N[} < -477€ S(H')‘*m"‘)(' o W)) mm%o(‘ 3 ) 2 Gl (39
Avtmenf a4 e b *ﬂnlf'v‘)(n oy ) )

F = Lm0

where —v (1) .

It is clear that if V> O then N(‘J) is extremely small.

Thus the situation which is of physical interest is the case where v ~ 1

In such a situation ( b R l <1 so that we can write approximately
% 15016 € a0 =
No) o -RT s [(m) +9u (v+q) €11 ] (34)
ﬂln°U+Ln1M(onJ7;'L“ﬁ 20N, /(f w)

It is clear from (34) that the imaginary part of the dispersion relation
esenlyif o <O
Setting o = — /S((S > O) we see that the Penrose criterion

is satisfied when

(35)

<
We = L)F‘ L\( ”°ufe(xu) - w? ca
?(l#q)wLF - 0y 9.
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T
If this approximation is to be valid we require k 20 and W>W, .

/O
- ; F%m (35) we see that this rétm‘fﬁs
<< ?2 ﬂo “F (X+2)
& - (36)
U¥+q) w_
Also from (32) we must have
> 211, 0 (¥12) QXF_(q-ﬂoup) -
U L]
vtad W, 3o
We will see later in the section on numerical estimates that (36) and (37)
are extremely lax conditions on the permitted values of (é .
With these restrictions we can approximate N (LJ) further

to obtain

2 50‘/& .
_ 2 (rqie A(1-e) Suhet re ANKD
— q_nox+7ﬁ w’?/z MC‘L

Niw) = (38)

where ¢ = "J/LJP and P, = W /w,o .

Since the wave interacts with the narticles at multiples of the cyclotron
frequency we see that the interaction is mainly with the perpendicular momentum
of the particles. Thus in the case where X > we have Landau da.MPihg
of all waves and as q consequence the energy associated with the wave increases
the perpendicular pressure. Thus the plasma tends to isotropy.

In the case where £ <O the perpendicular pressure is decreased
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since the waves abstract more energy from the perpendicular component of
motion than the parallel component. Since we initially had a greater perpendicular
pressure than parallel pressure we see that the plasma again tends to isotropy.

4. Amplification Rates

Under the approximation we have made it has been shown that an
unstable situation can exist for X< O . We must now consider the
e-folding time to see if the process can have physical significance.

(k2 -wt)

In general a disturbance of the form € when

applied to the linearized equations yields a dispersion relation which can be

put in the form

kL= T(w) +1 K(W) (39)

where J_ and K are real functions of the complex variable
L - -
w , and k is positive definite.

Writing ) = WwJ” +1 8 we see that

R = J(ws ) , (400)
0=K(w5$)

(40b)

Assuming a priori that S<< a_)P we can expaond (40) in a Taylor series. Thus
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kz'_v. T(U’,a)
o = Klw,0) + aK(U--’—S)Z(%f)*““

3 (5 | (1)
-0
bR
Since k is m g romorphic in W and S we see from
Cauchy's relations that
K(vs,§
OK (v é)] s:)‘(uns)/ o 3Tler o) ”
6(8/41’3) oo a{M%)l’) ey owr
Keeping only terms up to first order in (X/Q’,) in (41) and
using (42) we see that
g ~  — K(w',o)/ dJ(w;0)
= 5?7- v (43)

Now we have already evaluated K(CJ, 0) (3 N’b)) ) and
:,_{'J, O) (5 (k)l*u;) ¢t ) in order to satisfy the Penrose condition. Thus
it is a simple matter to write down g and upon so doing we find that

5/ -% - 7/2'1 - ¢‘/ t
gﬁ QN2 (AT %e (I‘e?“{ € K{&ff IC z(e%-eqp’) )

===

WY, 9
8 no r A wP /7.

m.

From (44) it can easily be seen that g possesses a maximum

close to CJO = @ and at the maximum
Q
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5. Numerical Estimates

To obtain some idea of the numerical size of the instability in order to
see if it can be physically significant we apply the above calculation to the case
of galactic cosmic ray electrons.

The parameters required are

(i) Ho = this has been estimated to be about 5 - 10—6,-'-1 (Gardner
and Davies, 1965).

(i) N - the neutral hydrogen number density has been estimated
to be ~ 1 cm-3 of which perhaps 2% is ionized (Westerhout, 1957; Wilson,

1963) thus giving N ~2- 102 em™,

(iid) Y - from observations of cosmic ray protons this has a
value of about 2.5 . If we assume that the cosmic ray electrons possess a
similar spectrum, they also have ¥ ~25.

(iv) no - for cosmic ray protons this has the value

i, ~ 1.5, Since we require n:- >>j_ for the calculation to be
valid‘we will assume Ho ~d 5 for the fast electrons.

(v) (" —. the energy density of cosmic ray protons gives
o~y 02n4 2 -
5 pe (\q’ ) ff’ 77‘(’

- )
where 5 S 10 2 ergs cm 3 and the suffix (]3 stands for
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protons. If we assume that there is equipartition of energy between the cosmic ray

protons and electrons then

g

AN —— 6'7. ID’QCM—3‘
C Fmc(x-0l,

Employing the above parameters in (45) we see that

- y
g = T 2 I'S.IO3 [L\([.g‘,ov.(s_,)] 2 .

(46)

It is clear from (46) that as (5 —>0 0o T,. =200 )'
so that the closer the plasma is to isotropy the longer it takes for the wave to abstract
energy from the plasma.

It is well known that the observed cosmic ray protons are isotropic

to better than 1% (Greisen, 1956) so that a (3 of 10-4 is certainly well below

this observational upper limit. This value of ? leads to an e-folding time of

To = 410" g, )

In increasing its energy by a factor of 5 or so in this time the wave
has drawn mainly on the perpendicular component of motion of the relativistic plasma.
Then the fast electrons become more nearly isotropic. For example if we assume
that cosmic ray electrons are at least 108 years old on the average, then we expect

that isotropization will be very nearly complete with this F value.
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One of the main drawbacks of a linearized calculation is that no
account of the energy loss of the fast particles is given. Thus we do not know whether
the relativistic electrons lose so much energy during isotropization that they cease
to be relativistic, or whether the total particle energy loss is so small it can be
neglected.
We wish to point out that the important consequence of instability
is that the plasma rapidly becomes isotropic if the anisotropy is reasonably large.
With the parameter given we see that the conditions which we must

satisfy, namely

a) (3 c< &l wp (342)

9v+4) w, -
b f>> 2T, wp (¥*2) Q)(P_(c}-ﬂow_p_
U4y L S e 5

become

a) (‘s<< 76
J
-S5O
b) (> 7 ée ,
With (° = JO T itis clear that both of these conditions are met and con-
sequently the approximate formulae for N(w) and S are valid.
Associated with the most unstable wave are a frequency, fmax'

and a wavelength, >\ ax’ which, for (3 = ]0_4, are given by

jﬁm.x:‘. S /?c/g.
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and

>\Wx ~ é.lOécm.

Thus the instability occurs on a very small scale compared with
the size of the galaxy.

6. Conclusion

Using a simple relativistic electron momentum distribution function,
in conjunction with a cold electron background, we have shown that the system
is unstable against waves propagating perpendicular to the embedded magnetic
field provided only that the perpendicular cosmic ray electron pressure is in excess
of the parallel cosmic ray electron pressure.

Assuming numerical parameters which are representative of the
values expected in the galaxy, we find that the instability is sufficiently rapid to
produce isotropy of the distribution function in a very short time compared to the
age of the cosmic ray electrons. For example, with an age of ]08 years and an
anisotropy of 10-4 we find an e-folding time which is only ~ 10_5 of the age.

For higher degrees of anisotropy the isotropization of the relativistic electrons pro-
ceeds even more rapidiy.

We conclude that this process is an extremely powerful one for
producing isotropy of the relativistic cosmic ray electrons.

We further note that the instability occurs only when relativistic
particles are present and arises because a fast particle's mass differs from its

rest mass.
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Appendix
Let

< =Z 3. (9

ne-ng (NE-b?) (A1)

It can be shown (Watson, 1952) that for all /OL and y> such that

pe (/A+ V) >—| we can write

A

9; (a)J; (2) = a?-rr"( 9;” (?ama) cos(p-v)8 ,d O . (A2)

Hence when /A; n=-y and " is integer we see that
M.
2 A=
J, () =) 4T IJ;(.ZamQ) s A0 (A3)

]

Substituting for (A3) in (A1) gives

7 .
S:-?'n-'f T (taas) )] Cendns 4o

n=-w (nt- ‘92)

It can easily be shown that

Z (’DKC—U’SO?H@ = -n'la"wsec(rrb) %(Ql)@) . (A5)
hZ-y (hl_bl)
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Making use of (A5) in (A4) we see that

7
C o 2 e (k) J T (uee18) crsdhf o 0

)

Upon using (A2) in the above equation we see that

S = -vllwsecrl) Jy@) J () |

which is the required result.
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Figure Caption

Penrose criterion for instability for varying degrees of anisotropy.
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